National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
The role of acetylation in the RNA recognition motif of SRSF5 protein
Icha, Jaroslav ; Staněk, David (advisor) ; Šenigl, Filip (referee)
Acetylation is emerging as an important posttranslational modification, which is found in thousands of proteins in eukaryotes, as well as prokaryotes. Global proteomic studies implicated acetylation in regulation of various processes like metabolism, gene expression, cell cycle or aging to name a few. In this work I set out to investigate the role of acetylation of a splicing regulatory protein SRSF5 by creating mutations in its acetylation site. I tested the hypothesis that acetylation influences SRSF5 interaction with RNA. I expressed acetylation-mimicking (Q) or non-acetylable (R) mutant of SRSF5 in HeLa cells and measured their interaction with RNA by RNA immunoprecipitation or in vitro by fluorescence anisotropy. Both approaches agreed that mutants interact with RNA less than the wild type protein and Q mutant bound RNA weaker than R mutant. I did not detect further difference in localization or dynamics among the proteins in vivo, which suggests that difference caused by weakened interaction of mutants with RNA was outweighed by other factors influencing SRSF5 behaviour, probably protein-protein interactions. I also found out that mutant SRSF5 proteins do not have a dominant effect on splicing of fibronectin alternative EDB exon. The data obtained give an indirect evidence for the hypothesis that...
TET1 overexpression, DNA hypomethylation and aberrant expression of human endogenous retrovirus ERVWE1 in germ cell tumors
Benešová, Martina ; Trejbalová, Kateřina (advisor) ; Černá, Marie (referee) ; Reiniš, Milan (referee)
TGCTs are tumors of male germ cells. They comprise of seminomas and non-seminomas (embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma). GCT types differ in the stage of differentiation, from undifferentiated seminoma to more differentiated non-seminomas. In our studies, we aimed to characterize specific epigenetic features of GCT types that enable transcription derepression of the human endogenous retrovirus ERVWE1 in these tumors. We detected upregulated mRNA expression of TET1-3 dioxygenases in GCTs, especially of TET1 in seminomas. Moreover, seminomas showed low global levels of 5mC and 5hmC. TET1 knock-down in a seminoma-derived cell line resulted in a decreased amount of 5hmC and unchanged 5mC level. These results stress the dynamics of cytosine modifications, which has not been precisely described yet. Further, we observed high level of ERVWE1 transcript together with efficient RNA splicing in seminomas. Detected ERVWE1 transcription is independent of the expression of other examined endogenous retroviruses. ERVWE1 transcription derepression corresponds with the low global level of 5mC detected in seminomas, which involves extensive DNA hypomethylation of the ERVWE1 promoter. We propose the high TET1 dioxygenase expression as s marker of undifferentiated GCTs. Furthermore, we...
Rous sarcoma virus replication blocks in mammalian cells
Koslová, Anna ; Hejnar, Jiří (advisor) ; Ruml, Tomáš (referee) ; Weber, Jan (referee)
One of the important tasks of virology and immunology is to explore the species- and cell-barriers preventing virus horizontal transmission and reveal the ways how viruses overcome these barriers and "adapt" to different species. This work is based on a well- established retroviral model - avian Rous sarcoma virus (RSV) and studies virus replication blocks in mammalian cells at both pre- and post-integration level. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor mediates virus entry into cells. Although mammalian orthologues of specific chicken receptors do not support RSV entry, it was observed that some RSV strains are able to enter mammalian cells. Several RSV-transformed rodent cells lines were described and analysis of provirus H20- RSV in one these cells lines (hamster H-20 tumor cell line) showed multiple mutations including two crucial amino acid substitutions in different regions of Env. Substitutions D32G and L378S confer virus transmission to hamster, human and also chicken cells lacking the appropriate receptor. Altered conformation of H20-RSV Env is similar to a receptor-primed (activated) state of Env. This observation indicates that virus can circumvent the need of original cell receptor because of spontaneous Env activation caused by single...
Role of promoter in the regulation of alternative splicing
Kozáková, Eva ; Staněk, David (advisor) ; Půta, František (referee) ; Blažek, Dalibor (referee)
It was shown that 95 % of human multi-exon genes are alternatively spliced and the regulation of alternative splicing is extremely complex. Most pre-mRNA splicing events occur co- transcriptionally and there is increasing body of evidence, that chromatin modifications play an important role in the regulation of alternative splicing. Here we showed that inhibition of histone deacetylases (HDACs) modulates alternative splicing of ~700 genes via induction of histone H4 acetylation and increase of Pol II elongation rate along alternative region. We identified HDAC1 the catalytic activity of which is responsible for changes in alternative splicing. Then, we analyzed whether acetylhistone binding protein Brd2 regulates alternative splicing and showed that Brd2 occupies promoter regions of targeted genes and controls alternative splicing of ~300 genes. Later we showed that knockdown of histone acetyltransferase p300 promotes inclusion of the alternative fibronectin (FN1) EDB exon. p300 associates with CRE sites in the promoter via the CREB transcription factor. We created mini-gene reporters driven by an artificial promoter containing CRE sites. Both deletion and mutation of the CRE site affected EDB alternative splicing in the same manner as the p300 knockdown. Next we showed that p300 controls histone...
Regulation of alternative splicing via chromatin modifications
Hozeifi, Samira ; Staněk, David (advisor) ; Krásný, Libor (referee) ; Lanctôt, Christian (referee)
Alternative splicing (AS) is involved in expansion of transcriptome and proteome during cell growth, cell death, pluripotency, cell differentiation and development. There is increasing evidence to suggest that splicing decisions are made when the nascent RNA is still associated with chromatin. Here, I studied regulation of AS via chromatin modification with main focus on histone acetylation. First, we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection in 700 genes. We provided evidence that HDAC inhibition induces histone H4 acetylation and increases RNA Polymerase II (RNA Pol II) processivity along an alternatively spliced element. In addition, HDAC inhibition reduces co-transcriptional association of the splicing regulator SRp40 with the target fibronectin exon. Further we showed that histone acetylation reader, Brd2 protein, affect transcription of 1450 genes. Besides, almost 290 genes change their AS pattern upon Brd2 depletion. We study distribution of Brd2 along the target and control genes and find that Brd2 is specifically localized at promoters of target genes only. Surprisingly, Brd2 interaction with chromatin cannot be explained solely by histone acetylation, which suggests that other protein-domains (in addition to bromodomains) are important for...
The role of acetylation in the RNA recognition motif of SRSF5 protein
Icha, Jaroslav ; Staněk, David (advisor) ; Šenigl, Filip (referee)
Acetylation is emerging as an important posttranslational modification, which is found in thousands of proteins in eukaryotes, as well as prokaryotes. Global proteomic studies implicated acetylation in regulation of various processes like metabolism, gene expression, cell cycle or aging to name a few. In this work I set out to investigate the role of acetylation of a splicing regulatory protein SRSF5 by creating mutations in its acetylation site. I tested the hypothesis that acetylation influences SRSF5 interaction with RNA. I expressed acetylation-mimicking (Q) or non-acetylable (R) mutant of SRSF5 in HeLa cells and measured their interaction with RNA by RNA immunoprecipitation or in vitro by fluorescence anisotropy. Both approaches agreed that mutants interact with RNA less than the wild type protein and Q mutant bound RNA weaker than R mutant. I did not detect further difference in localization or dynamics among the proteins in vivo, which suggests that difference caused by weakened interaction of mutants with RNA was outweighed by other factors influencing SRSF5 behaviour, probably protein-protein interactions. I also found out that mutant SRSF5 proteins do not have a dominant effect on splicing of fibronectin alternative EDB exon. The data obtained give an indirect evidence for the hypothesis that...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.